# 50+ Solved Probability Distribution MCQs – Statistics

You can learn about Probability and Probability Distribution MCQs with answrs , in which you can read about multiple choice questions on discrete probability distribution for online exams ,job tests .

### Probability Distribution MCQs

Mean of continuous uniform (Rectangular) distribution is.
A.(ß+a)/2
B.(ß-a)/2
C.(ß-a)/4
D.?(ß-a)?^2/12

A.(ß+a)/2

Mean deviation of continuous uniform (Rectangular) distribution is.
A. (ß+a)/2
B. (ß-a)/2
C. (ß-a)/4
D. ?(ß-a)?^2/12

C. (ß-a)/4

If 0 A. 1
B. 1/?
C. ?
D. None of these

B. 1/?

?(1-?t)?^(-1)ism. g. f of.
A. Uniform distribution
B. Gamma distribution
C. Beta distribution
D. Negative Exponential distribution

D. Negative Exponential distribution

Mean deviation of Negative Exponential distribution is.
A. ?(1-?t)?^(-1)
B. 1-e^(?-x/?_? )
C. 2?e^(-1)
D. ?^2

C. 2?e^(-1)

Mean of Negative Exponential distribution is.
A. ?(1-?t)?^(-1)
B. 1-e^(?-x/?_? )
C. 2?e^(-1)
D. ?

D. ?

Mode of Negative Exponential distribution is.
A. ?(1-?t)?^(-1)
B. Does not exist
C. 2?e^(-1)
D. ?

B. Does not exist

Range of the distribution is 0 to 8 of.
A. Gamma distribution
B. Beta distribution of kind II
C. Negative Exponential distribution
D. All of these

D. All of these

If a = 1 then Gamma distribution becomes.
A. Uniform distribution
B. Beta distribution of kind II
C. Negative Exponential distribution
D. Laplace distribution

C. Negative Exponential distribution

If ß = 1, mean and variances become same of.
A. Uniform distribution
B. Beta distribution of kind II
C. Negative Exponential distribution
D. Gamma distribution

D. Gamma distribution

?aß?^2is variance of.
A. Uniform distribution
B. Beta distribution of kind II
C. Gamma distribution
D. Negative Exponential distribution

C. Gamma distribution

Mean of Gamma distribution is.
A. (a-1)ß
B. aß
C. (a-1)ß2
D. aß2

B. aß

(a-1)ß is mode of.
A. Uniform distribution
B. Beta distribution of kind II
C. Gamma distribution
D. Negative Exponential distribution

C. Gamma distribution

A distribution having five parameters is called.
A. Gamma distribution
B. Bivariate normal distribution
C. Beta distribution of kind II
D. Negative Exponential distribution

B. Bivariate normal distribution

a and ß are two parameters of.
A. Gamma distribution
B. Laplace distribution
C. Bivariate normal distribution
D. Negative Exponential distribution

a and ß are two parameters of.

?(1-ßt)?^(-a)is m.g.f of.
A. Uniform distribution
B. Beta distribution of kind II
C. Gamma distribution
D. Negative Exponential distribution

C. Gamma distribution

Mode is (l-1)/(l+m-2) of.
A. Gamma distribution
B. Beta distribution of kind I
C. Beta distribution of kind II
D. None of these

B. Beta distribution of kind I

0=x=1is range of.
A. Gamma distribution
B. Laplace distribution
C. Beta distribution of kind II
D. Beta distribution of kind I

D. Beta distribution of kind I

f(x) = 1/(ß(l,m)) ?x^(l-1) (1-x)?^(m-1), 0=x=1 is pdf of.
A. Gamma distribution
B. Laplace distribution
C. Beta distribution of kind I
D. All of these

C. Beta distribution of kind I

Mean is l/(m-1) of.
A. Laplace distribution
B. Beta distribution of kind II
C. Beta distribution of kind I
D. Gamma distribution

B. Beta distribution of kind II

Mode is (l-1)/(m+1) of.
A. Beta distribution of kind I
B. Laplace distribution
C. Beta distribution of kind II
D. Gamma distribution

C. Beta distribution of kind II

Variance is (l(l+m-1))/((m-1)^2 (m-2)) of.
A. Beta distribution of kind II
B. Laplace distribution
C. Beta distribution of kind I
D. Gamma distribution

A. Beta distribution of kind II

If f(x) = 1/2 e^(-|x| ), -8=x=8 then its variance is.
A. 4
B. 2
C. 0
D. None of these

B. 2

If f(x) = 1/2 e^(-|x| ), -8=x=8 then its mean deviation is.
A. 4
B. 2
C. 1
D. 0

C. 1

Range of Cauchy distribution is.
A. -8 to 8
B. 0 to ?
C. 0 to 8
D. -1 to +1

A. -8 to 8

Mode is v(1/2?) of.
A. Beta distribution of kind I
B. Laplace distribution
C. Beta distribution of kind II
D. Rayleigh distribution

D. Rayleigh distribution

Mean of ?2 distribution is.
A. 2n
B. n-2
C. n
D. 8n

C. n

Mode of ?2 distribution is.
A. 2n
B. n-2
C. n
D. 8n

B. n-2

If a = n/2 and ß = 2 then Gamma distribution becomes.
A. ?2 distribution
B. F- distribution
C. t- distribution
D. Beta distribution

A. ?2 distribution

If zi’s are independent standard normal variates then ?_(i=1)^n¦z_i^2 ~.
A. t- distribution
B. F- distribution
C. ?2- distribution
D. Beta distribution

C. ?2- distribution

?^2?normality if.
A. n?8
B. n?0
C. n?10
D. n?1

A. n?8

Which distribution becomes standard Cauchy distribution if n = 1.
B. F- distribution
C. ?2- distribution
D. t- distribution

D. t- distribution

Mean is zero of.
A. Beta distribution
B. F- distribution
C. t- distribution
D. ?2- distribution

C. t- distribution

Variance is n/(n-2) of.
A. Beta distribution
B. t- distribution
C. F- distribution
D. ?2- distribution

B. t- distribution

All odd order moments about origin/Mean are zero of.
A. Beta distribution
B. F- distribution
C. t- distribution
D. ?2- distribution

C. t- distribution

If n ?8 then t ?.
A. Normal
B. Gamma
C. Beta
D. Laplace

A. Normal

If x ~ F(n_1,n_2) then ……..~ F(n_2,n_1 ).
A. x2
B. 1/x
C. ?2
D. None of these

B. 1/x

n1andn2 are degrees of freedom of.
A. Beta distribution
B. t- distribution
C. F- distribution
D. ?2- distribution

C. F- distribution

F- distribution has.
A. Two parameters
B. Three parameters
C. Four parameters
D. None of these

A. Two parameters

0 to 8 is range of.
A. F- distribution
B. ?2- distribution
D. All of these

D. All of these

Variance of F-distribution exists for.
A. n2> 2
B. n2> 4
C. n2> 1
D. None of these

B. n2> 4

Mean of F-distribution exists for.
A. n2> 2
B. n2> 4
C. n2> 1
D. None of these

A. n2> 2

ß(l,m) =?_0^1¦?x^(l-1) (1-x)?^(m-1) dx is called.
A. Gamma function
B. Beta function of II kind
C. Beta function of I kind
D. None of these

C. Beta function of I kind

Which distribution is positively skewed.
A. Normal distribution
B. ?2- distribution
C. t- distribution
D. None of these

B. ?2- distribution

If y1 = y2 = y3 then first order statistics is.
A. y3
B. y2
C. y1
D. None of these

C. y1

If f(x) = e-x, 0 A. e-x
B. 1- e-x
C. e-x -1
D. None of these

D. None of these

If y1 = y2 = y3 then median is.
A. y3
B. y2
C. y1
D. None of these

A. y3

Which is order statistics.
A. A. M
B. Median
C. G. M
D. H. M

B. Median

To check the strength of a chain, we study.
A. Largest order statistics
B. Middle order statistics
C. Smallest order statistics
D. Mode

C. Smallest order statistics

To restrict the flood, we study.
A. Largest order statistics
B. Middle order statistics
C. Smallest order statistics
D. Mode